관리 메뉴

ScienceBooks

[전중환의 협력의 공식] 9화 협력자 끼리끼리 본문

완결된 연재/(完) 협력의 공식

[전중환의 협력의 공식] 9화 협력자 끼리끼리

Editor! 2016.09.22 10:58

『오래된 연장통』의 저자이자 국내 손꼽히는 진화 심리학자인 전중환 교수(경희대학교 후마니타스 칼리지)님께서 《과학동아》 2016년 신년호부터 새로운 연재물로 독자 여러분을 만나뵙습니다. 「협력의 공식」이라는 제목으로 연재되는 이번 글은 찰스 다윈 이래 수많은 진화 생물학자들이 달라붙어 비밀을 밝히고자 애썼던 ‘인간의 사회성’과 ‘협력’의 문제를 다룹니다. 《과학동아》에 글이 게재가 된 후 《과학동아》 글에 조금 더 살을 붙여 사이언스북스의 블로그에도 연재되고 있으니 많은 사랑 부탁드립니다.



대학교 4학년 때였다. 필자는 사회생물학을 연구하는 최재천 교수님 실험실에 소속되어 있었다. 구내식당에서 한 후배와 함께 밥을 먹고 있는데 그가 불쑥 물었다. “형, 해밀턴의 규칙에서 유전자를 50%, 25%, 12.5%… 이런 식으로 공유한다는 게 무슨 말이에요? 침팬지와 인간도 유전자를 98% 이상 공유하잖아요? 그러니 사람들끼리는 유전자를 더 공유하겠죠. 그런데 왜 갑자기 이타적 행동을 얘기할 때는 공유하는 정도가 뚝 떨어져요?”


조… 좋은 질문이다. 지난 글에서 우리는 ‘유전적 근연도(genetic relatedness)’를 행위자와 수용자가 사회적 행동을 일으키는 유전자를 공유할 확률이라고 정의했다. 적지 않은 사람들이 이 말을 이렇게 받아들인다. 근연도는 행위자가 지닌 모든 유전자들(즉, 유전체)을 상대방의 그것들과 쭉 비교했을 때 상대와 동일한 유전자들이 차지하는 비율이라고 말이다. ‘공유’가 단순히 DNA 유전 정보가 같다는 뜻이라면, 이렇게 정의된 근연도는 분자유전학 앞에서 무참히 무너진다. 분자유전학자들은 누구든지 그 어떤 다른 사람과 유전적으로 99.5% 동일함을 입증했다.[각주:1] 누구나 유전적으로 대부분 같은 판국에, 사촌과의 근연도는 고작 12.5%고 남남과의 근연도는 아예 0%라니 이게 대체 무슨 말일까?


유전적 근연도는 사실 이해하기 쉽지 않다. 다 알았다 싶어도 궁금증이 계속 꼬리를 문다. 근연도를 정확히 이해하는 길을 찾아보자. 




근연도는 유전자를 공통 조상으로부터 물려받아 공유할 확률인가?


후배가 던진 질문에 답하고자 이십여 년 전의 필자는 두 가지를 지적했다. 첫째, 근연도는 전체에서 무언가가 차지하는 비율이 아니라 어떤 사건이 일어날 확률이다. 즉, 내 유전자 전체 중에 상대와 같은 유전자들이 차지하는 비율이 아니라, 사회적 행동을 일으키는 바로 그 유전자를 내가 상대방과 공유할 확률이다.


둘째, 근연도는 행위자와 상대방이 공통조상으로부터 동일한 대립유전자를 각각 물려받은 덕분에 (이를 ‘계승 동일(identical by descent)’이라 함) 공유할 확률이다. 그냥 우연히 유전정보만 같으면 되는 게 아니다. ‘이기적인’ 유전자는 상대방의 몸 속에 있는 복제본이 정말로 과거에는 한 조상의 몸 안에서 자기와 일심동체였는지 유심히 살핀다.[각주:2]

    

이처럼 유전적 근연도를 두 개체가 사회적 행동을 일으키는 유전자를 공통 조상으로부터 각각 물려받아 공유할 확률로 정의하면 별 문제가 없어 보인다. 혈연 관계의 멀고 가까움을 이렇게 나타내는 방식은 피셔, 할데인과 함께 현대적 종합을 이끌었던 슈얼 라이트(Sewall Wright)가 1922년에 처음 고안했다. 라이트는 이를 ‘관계 계수(coefficient of relationship)’ r이라 칭하고 그 값을 쉽게 구하는 방법도 제시했다.[각주:3]


예를 들어, 엄마와 자식 사이의 r을 구해 보자. 자식의 몸 속에 있는 어느 한 대립유전자가 자신의 뿌리를 조용히 자문한다. “나는 엄마에게 왔을까? 아빠에게서 왔을까?” 감수분열 덕분에 가능성은 같다. 따라서 엄마와 자식 간의 r은 0.5다. 할머니와 손주 사이의 r은 어떨까? 할머니와 손주는 두 세대가 차이 난다. 각 세대마다 확률은 반반이다. 따라서 할머니와 손주 간의 r은 (0.5)² = 0.25다.


이번에는 아빠는 같은데 엄마가 다른 형제, 즉 배다른 형제 사이의 r을 구해 보자. 형의 몸 속에 있는 어느 대립유전자가 배다른 동생의 몸 안에 자신의 ‘진짜 복제본’이 들어 있을 가능성을 살핀다. 가능성은 딱 하나다. 이 대립유전자가 형의 친엄마가 아닌 아빠로부터 왔고, 또 아빠가 50%의 확률로 이 대립유전자를 동생에게 줬어야 한다. 즉, 배다른 형제간의 r은 (0.5)² = 0.25다.


엄마와 아빠를 모두 공유하는 친형제 사이의 r은 어떨까? 어떤 대립유전자를 한 공통조상으로부터 물려받아서 두 형제가 공유하려면 가능성은 두 가지다. 엄마를 통하거나 아빠를 통해서다. 그러므로 친형제 간의 r은 2×(0.5)² = 0.5다. 사촌 사이의 r도 마찬가지로 구할 수 있다. 예컨대, 이종사촌의 경우, 내 외할머니나 내 외할아버지를 통하여 나는 내 이종사촌과 유전자를 공유할 수 있다. 그러므로 이종사촌간의 r은 2×(0.5)⁴ = 0.125다.


라이트는 공통 계승을 통해 두 피붙이 사이의 멀고 가까움을 측정하는 법을 고안했지만, 정작 이타성의 진화를 탐구하는 데는 활용하지 않았다. 라이트의 관계 계수를 빌어다가 이타성을 처음 설명한 장본인은, 잘 알다시피, 해밀턴이었다. 단, 해밀턴은 유전적 근연도가 관계 계수와 똑같다고 결코 말한 적이 없음에 주목해야 한다.               


자연 선택이 느리다는 조건이 충족된다면, 적절한 회귀 계수는 슈얼 라이트의 관계 계수 r에 매우 근사할 것이다.

─해밀턴, 1963년, 354쪽.[각주:4]


왜 해밀턴은 선택이 느리다는 전제 조건 하에 유전적 근연도는 관계 계수에 가까워진다고 애매모호하게 썼을까? 진실을 말하자면, 유전적 근연도는 족보를 따지는 관계 계수가 아니다! 근연도는 유전자를 공통조상으로부터 물려받아 공유할 확률로 정의될 수 없다. 필자는 틀린 답을 장황히 설명하고 후배 앞에서 우쭐해 했다. 아, 부끄럽다. 대체 근연도는 무엇일까?




0보다 큰 근연도는 ‘끼리끼리’다


근연도는 어떤 유전자 좌위(대립유전자가 들어가는 자리)를 놓고 개체군의 평균적인 유전적 유사성과 비교했을 때 두 개체가 얼마나 더 유사한지 나타내는 통계 척도이다.[각주:5] 두 개체가 얼마나 비슷한지 그냥 따지는 게 아니다. ‘개체군 평균에 견주어’ 두 개체가 얼마나 ‘더’ 비슷한지 따진다는 것이 중요하다. 또한, 유사성만 따질 뿐 어떤 요인이 그 유사성을 만들었는지는 전혀 상관 없다. 공통 계승을 통한 혈연 관계뿐만 아니라, 다른 요인도 0보다 큰 근연도를 만들 수 있다는 말이다.    


그림 1. 무작위적인 배열과 무작위적이지 않은 배열의 비교. 협력자는 손실을 감수하면서 상대방에게 이득을 준다. 무임승차자는 남에게 이득을 주는 일 없이 받기만 한다. 각각의 경우에서 협력 행동을 일으키는 유전자의 개체군 평균 빈도는 50%이고, 무임 승차 행동을 일으키는 유전자의 평균 빈도도 50%다. 편의상 무성생식을 하는 단수체 생물을 가정했다.


손실을 감수하며 무조건 남에게 이득을 주는 협력자와 이득을 받기만 하는 얌체 무임승차자가 함께 존재하는 가상의 개체군을 예를 들어 보자(그림 1). 개체군은 4개의 소집단으로 나누어져 그 안에서만 사회적 상호작용이 일어난다. 각각의 경우에서 협력을 지시하는 유전자의 평균 빈도는 50%고 무임승차를 지시하는 유전자의 평균 빈도도 50%다.


<그림 1. 가>는 협력자와 무임승차자가 무작위적으로 만나서 상호작용하는 경우다. 순전히 운에 따라 상대방을 만나니, 협력자 입장에서 상대방도 자신과 같은 협력자일 가능성은 협력을 만드는 유전자의 전체 평균 빈도와 같으리라고 추정할 수밖에 없다. 예를 들어 보자. 전세계 총인구에서 한국인이 차지하는 비율은 약 0.7%다. 외계인이 지구 어딘가에 사는 사람 A씨를 납치했다. A씨 옆집에 한국인이 거주할 가능성은 얼마나 될까? 외계인이 A씨를 어디서 납치했는지는 아무도 모른다. 우리는 그 가능성이 0.7%라고 답할 수 밖에 없다.


이렇게 상대방을 무작위적으로 만나는 상황에서는, 처음에 협력 유전자가 아무리 높은 빈도로 있었다고 해도, 결국엔 배신이 득세하고 협력은 자취를 감춘다. 협력자는 누구든지 만나는 족족 호의를 베푸느라 손실을 감수하지만, 무임승차자는 그런 손실을 일체 부담하지 않기 때문이다. 게다가 상대방이 운 좋게 협력자일 때 상대방으로부터 받는 이득은 당사자가 무임승차자건 협력자건 완전히 똑같다. 요컨대, 무작위적인 배열에서 협력은 언제나 제거된다.

 

<그림 1.나>는 협력자는 협력자끼리, 무임승차자는 무임승차자끼리 만나서 상호작용하는 경우다. 유유상종이다. 초록은 동색이다. 이처럼 무작위적이지 않은 정적 배열에서는 협력자가 협력자를 만날 가능성(그림에선 100%)이 협력자가 개체군에서 차지하는 평균 빈도(그림에선 50%)보다 더 높다.


협력자의 정적 배열, 즉 ‘협력자 끼리끼리’는 협력이 진화하는 열쇠다. 위에서 보았듯이 협력의 진화를 가로막는 가장 큰 장애물은 무임승차자가 정당한 대가를 치르지 않으면서 염치없이 협력자와 어울려 이득을 뜯어낸다는 것이다. 따라서 혈연 관계나 혹은 다른 요인이 무임승차자가 협력자를 좀 덜 만나게 잘 타이르고 말려줘야 한다. 다시 말해서, 그냥 우연에 의해서보다 협력자는 협력자끼리 더 많이 만나고 무임승차자는 무임승차자끼리 더 많이 만나야 이타성이 진화할 가능성이 비로소 열린다.


빙고! 이것이 근연도의 진짜 의미다. 근연도는 협력자가 협력자를 만날 가능성이 그냥 우연에 의해 협력자를 만날 가능성과 얼마나 차이 나는지 알려준다. 이를 좀 멋있게 표현할 방법이 뭘까? 우연에 의한 무작위적인 배열에서는 무임승차자가 협력자를 만날 가능성이나 협력자가 협력자를 만날 가능성이나 같다고 했다. 따라서 이렇게 쓰면 된다.


유전적 근연도 = (협력자가 협력자를 만날 가능성)- (무임승차자가 협력자를 만날 가능성)


근연도가 0보다 크면 비슷한 것들끼리 어울린다. 혈연관계 등의 요인이 무임승차자를 잘 제지해 준 덕분에 순전히 우연히 만날 때에 비해 무임승차자보다 협력자가 더 자주 협력자의 파트너가 된다. 근연도가 0이면 무작위적으로 만난다. 근연도가 0보다 작으면 반대되는 것들끼리 더 자주 어울린다. 이러한 부적 배열에서는 협력자가 무임승차자를 만날 가능성이 협력자가 우연히 무임승차자를 만날 가능성보다 더 높다(그림 1다 참조). 즉, 진정한 근연도는 0과 1사이의 확률이 아니다. 근연도는 개체군 평균에 비해 행위자와 상대방이 얼마나 유사한지 나타내는 척도이므로 -1과 +1 사이의 값이다.


앞의 예를 다시 들어 보자. 외계인에 납치된 A씨가 서울에 사는 한국인 김철수씨임이 밝혀졌다. 다시 묻는다. A씨 옆집에 한국인이 거주할 가능성은 얼마나 될까? 분명히 여러분은 그 가능성이 적어도 0.7%보다는 높다고 답하리라. 이것이 핵심이다. 만약 전세계 총인구에서 한국인의 비율이 70%라면, 여러분은 A씨의 이웃이 한국인일 가능성이 70%보다 더 높다고 답할 것이다. 각 나라 사람들은 동포끼리 한 곳에 옹기종기 모여 사는 경향이 있다. 즉, A씨가 서울 시민이라는 사실은 A씨 옆집 이웃이 한국인일 가능성을 한국인의 전세계 평균 빈도보다 더 높여준다. 


위의 예에선 전체 개체군의 유전적 조성이 공간적으로 균일하지 않다는 요인이 근연도를 양수로 만들었다. 족보를 따져서 알 수 있는 혈연관계도 근연도를 양수로 만든다. 어떤 이타적 행동을 일으키는 유전자의 개체군 평균 빈도가 0.01%라 해도, 이 유전자를 가진 이타주의자가 자신의 사촌과 상호작용한다면 사촌이 같은 유전자를 지닐 가능성이 0.01%보다 더 높으리라고 기대할 수 있다. 마찬가지로, 이타성의 유전자가 개체군에서 이미 99%나 존재한다고 해도 이타주의자는 자신의 사촌이 같은 유전자를 지닐 가능성이 99%보다 더 높으리라고 기대할 수 있다.         

  

정리하자. 근연도는 개체군 평균에 비하여 행위자와 수용자가 유전적으로 얼마나 더 유사한지 알려주는 척도다. 근연도가 0보다 크다면, 해밀턴의 규칙에 따라 이타성이 진화할 수 있는 길이 열린다. 족보를 따지는 혈연 관계는 근연도를 0보다 크게 만드는 여러 요인 중의 하나일 뿐이다.                  


★협력이 진화할 조건★


협력자 ‘끼리끼리’가 이루어져야 비로소 집단 내에서 협력이 진화할 가능성이 생긴다. 이를 간단한 수식모델로 이해해 보자. 집단 내에 손실(c)을 감수하며 무조건 남에게 이득(b)을 주는 협력자와 이득을 받기만 하는 무임승차자가 존재한다. 무작위적이지 않은 배열을 고려하기 위해, 협력자(A)가 무임승차자(N)와 만날 확률을 Pr(N|A)라 하자. 이때 협력자는 주기만 하고 아무 것도 못 받으므로 (-c)의 배당을 받는다. 협력자(A)가 다른 협력자(A)를 만날 확률은 Pr(A|A)다. 이때 협력자는 손실(c)을 감수하며 상대를 돕고, 상대방 협력자로부터 이득 b를 받으므로 (b-c)의 배당을 받는다. 
무임승차자(N)가 협력자(A)를 만날 확률은 Pr(A|N)이다. 이 때 무임승차자는 b를 받기만 한다. 무임승차자(N)가 다른 무임승차자를 만날 확률은 Pr(N|N)이다. 이 때는 서로 안 도와주므로 0의 배당을 받는다. 누구나 기본적으로 얻는 기저 적합도는 1이라고 하자.
협력자가 이 개체군에서 얻는 적합도는 다음과 같다.


그런데, 협력자가 다른 협력자를 만날 확률 Pr(A|A)과 협력자가 다른 무임승차자를 만날 확률 Pr(N|A)을 더하면 1이므로,

이제 무임승차자가 이 개체군에서 얻는 적합도를 구해 보자.


협력자가 선택되려면, 즉 협력자가 얻는 적합도 W(A)가 무임승차자가 얻는 적합도 W(N)보다 크기 위해서는 다음 조건이 성립해야 한다.

 

즉, 협력자가 다른 협력자를 만날 가능성이 무임승차자가 협력자를 만날 가능성보다 크다면, 협력이진화할 가능성이 비로소 열린다. 근연도가 충분히 크다면, 그리고 b/c가 충분히 크다면 위의 부등식은 충족될 수 있다. 만약 개체들이 무작위적으로 만나는 바람에 협력자가 협력자를 만날 가능성이나 무임승차자가 협력자를 만날 가능성이나 똑같다면, 위의 부등식의 좌변은 무조건 0이 된다. 따라서 b/c가 아무리 크더라도 협력은 진화할 수 없다. 


※ 관련 도서 (도서명을 누르면 도서 정보를 확인하실 수 있습니다.)

『오래된 연장통』

『욕망의 진화 










  1. Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., et al. (2007) The diploid genome sequence of an Individual human. PLoS Biology 5(10): e254. [본문으로]
  2. McElreath, R., & Boyd, R. (2008). Mathematical models of social evolution: A guide for the perplexed. University of Chicago Press. [본문으로]
  3. Wright, S. (1922). Coefficients of inbreeding and relationship. The American Naturalist, 56(645), 330-338. [본문으로]
  4. Hamilton, W. D. (1963). The evolution of altruistic behavior. The American Naturalist, 97, 354-356. [본문으로]
  5. Hamilton, W. D. (1963) Hamilton, W. D. (1964) The genetical evolution of social behavior. I & II. Journal of Theoretical Biology, 7, 1-52. Hamilton, W. D. (1970) Selfishi and spiteful behaviour in an evolutionary model. Nature, 228, 1218-1220. Grafen, A. (1985). A geometric view of relatedness. Oxford surveys in evolutionary biology, 2, 28-90. [본문으로]
0 Comments
댓글쓰기 폼